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The Method of Lines Applied to a
Finline/Strip Configuration on an

Anisotropic Substrate

BRANDON M. SHERRILL, STUDENT MEMBER, IEEE, AND NICOLAOS G. ALEXOPOULOS, FELLOW, IEEE

Abstract —The method of lines (MOL), a numerical scheme for the
solution of partial differential equations that recently has been adapted to

the full-wave dispersive characterization of planar wavegnide structures, is
modified to treat cases having uniaziatiy anisotropic dielectric regions.
Anisotropy is present in commonly used substrate materials and typically

leads to significant modeling error if neglected.
The modus operandi of the method of lines is tbe discretization of

spatiaf variables into a set of lines. Consequently, partfal differential

equations are reduced to ordinary kinds possessing simple, closed-fotnr

solutions. Being simple from the onset, the anafysis effects an easily

implemented method of good and controllable accuracy.
The paper’s formulation is exercised upon an interesting form of firrfine,

one with both a fin and an isolated skip opposite one another on a uniazial
substrate. Computations providing dispersive effective permittivities and

impedances bigfdight the errors incurred in neglecting anisotropy.

I. INTRODUCTION

T HE METHOD OF LINES (MOL), a general princi-

ple in the mathematical literature (e.g., Rothe [1],

Faddeeva [2], Mikhlin et aL [3]), provides a simple means

for characterizing the dispersive properties of transmission

structures. The pioneering application of MOL to micro-

wave theory by Schulz et al. [4]–[6] affords an accurate

full-wave model of isotropic planar class waveguide struc-

tures (i.e., having plane dielectric regions separated by

interface metallization). More recent formulations [7]–[11]

exist to deal with special features such as nonuniform

conductors and inhomogeneous or gyromagnetic regions.

This paper reports an application of the basic method

accounting for uniaxially anisotropic dielectrics. Ani-

sotropy is present in commonly used substrate materials

and usually produces significant modeling error if ne-

glected [12]. Thus, the presented plan broadens the existing

MOL literature to a wider class of materials (i.e., uniaxial).

MOL is a hybrid scheme incorporating components

from both differential and difference analyses. Under it,

all spatial variables but one of a scalar wave equation
system are discretized. Upon a decoupling transformation,

the system is solved exactly in closed form. No infinite

summations [13], integrals [14], or basis functions [15] are

present to impede calculation. Being simple from the onset,
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the analysis effects a method of good and controllable

accuracy.

After exposition, this new formulation is exercised upon

an interesting, relatively unstudied form of firdine possess-

ing both a fin and an isolated strip. Published results are

available for this structure for isotropic substrates [6], [16],

and comparisons of our results to these are excellent. After

these checks, this paper proceeds to report on anisotropic

cases, which deviate significantly from isotropic ones, lend-

ing import to its modeling.

II. MATHEMATICAL FORMULATION

General MOL principles are highlighted herein as the

specific apparatus to treat the aforementioned finline is set

up. The geometry considered is that of Fig. 1. This “fin-

strip” is a uniform line possessing a fin of spacing s

opposite a strip of width w on a dielectric substrate of

thickness t. Conductors are assumed to be negligibly thin

and lossless. The coupled version of this line (i.e., having

dual strips) is found by Aikawa [17] to make possible

directional coupler designs that were previously impracti-

cal. It is likewise the additional degree of freedom pro-

vided by its strip/slot combination that prompts study of

this paper’s structure. Also, Meier [18] reports that other

advantages appear to be exhibited in general by such
~-plane components. In the light of these notes, this

ww~eguiding structure merits further attention.

The feature of interest is dielectric anisotropy. This

paper assumes uniaxial regions with optical axes normal to

region interfaces. Material is often supplied or selected in

this orientation in attempts to suppress anisotropic behav-

ior [19]. Hence, in the given coordinate system, each region

possesses a tensor permittivity of the form (eYY = cl,, CX. =

e
Zz ‘El):

H

(L 00
~= ~~oqo (1)

Oocl

with relative permittivities cl,, c ~ and free-space permittiv-

it y e~. Also, each region is assumed to be nonmagnetic

with free-space permeability p ~. As Fig. 1 indicates, the

problem consists of three homogeneous regions (1,2,3).
The central one is a dielectric described by (1,,c ~ # 1 while

the two others are air.
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Fig. 1. Finline/stfip configuration.

Having clarified the structure, determination of its fields

is facilitated with Hertzian potentials having components

in the optical a& direction [20]

@’=}ll’’’(x,y, z). (2)

Denoted by e, h, two potentials, the electric and the mag-

netic, comprise the modes forming the general hybrid

solution. Assuming an e ‘Jot time-harmonic variation, the

fields of a homogeneous region are

i(x, y,z) =V(V. H=)+ k~lle-j6JpOV Xllh (3a)

and

fi(X, ~,Z) =jCJ60fLV X~e+V(V.@)+k~fik (3b)

where

kll=nllkO, kl =nlko, k.= (J6 (4a)

and

r~11= ~11, n.=~, n=n,,/n L. (4b)

Propagation in the + z direction with phase constant /3 (to

be determined) entails the functional dependence

lle’~(x, y,z) =Ve’h(x, y)e-~pz. (5)

The transverse potentials T’> ‘(x, y) are solutions to the

scalar wave equations

a2 a2
_W(x, y)+n2 —V’(X, y)

ay2

+(k; –p2)Ye(x, y) =0 (6a)

and

a2 a2
-#(x, y)+ —w~(x, y)

ay2

+(k~ ‘~2)@(X, y) =0 (6b)

for each region. This partial differential equation (PDE)

set is the “input” to the method of lines. Through the

“quantizing” of one of its independent variables, MOL

approximates the PDE system to an ordinary differential

equation (ODE) one yielding equations more readily solv-
able.

For this specific setup, the usual case of conductors

placed symmetrically on the substrate i: assumed. Taking

this symmetry plane as a magnetic wall together with half

a guide cross section yields an equivalent and more effi-

cient problem still yielding the dominant mode. Now as

~h Xe ~h ~e ~h
01 l“””ew” “N N %+1

Fig. 2. Magnetic/electric sidewall discretization scheme.

the view of Fig. 2 shows, both potentially are sampled into

the interior functions

Y; ’fi(y) =* ’’~(x;’~, y), ,.. *,Ni=~ (7)

on N lines, each with spacing

h=(xfi+l -xj)/(N+l/2). (8)

The magnetic and electric sidewalls are positioned respec-

tively at x: and x;+ ~ and are at the (constant potentials

T; and ~fi+ ~, respectively (both zero). ILikewise, the scalar

wave equations are discretized upon these lines, yielding

fori=l,.. .,N

n’ %lY)+;[*: +l(Y)-2%l Y)-t%(Y)l
dy’

+(k~–P2)*~(y) =0 (ga)

and

%Y)+~[*j !+l(Y)-2*?(Y)+Y7 -l(Y)]
dy2 ‘

+(k~ ‘~2)*;(y) =0. (9b)

In this “discretized” domain, these are represented by

[]

V:’h(y)

T“~(y) = ; (lo)

S@(y)

and

d2 –
n2h2 —Te(y)– [~e–h2(k~– ~2)~]%e(y) =6 (ha)

dy 2

h2 -j$~h(y)-[~k-h2(k~ -~2); ~h(y) =6 (Ilb)

where ~ an~ 6 are the identity and null entities, respec-

tively, and D” h are the derivative matrices

“’h=F+li:lNJ ’12)
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The sidewall constants Df’h, Dj’ h are from the set {1, Q}

with D; = D: =1, D; = D: = 2 for this discourse.

Uncoupling of the governing ODE set is possible by a

linear transformation upon the potentials. A simple one

exists as a consequence of the uncomplicated wall boundary

conditions (i.e., lossless) and the unsophisticated discreti-

zation scheme (i.e., equispaced). In these other cases, this

transformation must be approached numerically [11], but

here analytic expressions are available [6]. Table I in [6]

lists this transformational matrix in its forms versus side-

wall type. Applying it to the derivative matrices, whose

nondiagonal nature is yielding the coupling, gives
—

,,h=~,,h~et,k~e,h~ (13)

where ~e’ h are the achieved diagonal matrices, and t—.

indicates transposition&H~re, Fe, % are entries of the third

row of [6, table I] and Th, Ah are those of the second. When

in conjunction with (13) the transformed potentials

&’h(y)=F;,hT’’h(Y) (14)

are defined, an uncoupled wave equation system results:

#h2#(y)-&&(y)=6 (15a)

and

hz%(y)-i:fih(y)=b
dy2

(15b)

where for each region

l?:= [X’–hz(k;–flz)j] (16a)

and

i;= [i%z(k~-pz)i]. (16b)

A valuable property of this “transformed” domain is that

all matrices in it are diagonal and so behave as vectors.

This permits matrix equation algebra to be performed

element-by-element rather than by grand manipulation.

Hence, solutions to (15) are simply (i= 1,..., N)

~et=(L)z=[(?)l]’/2 (17a)

and

Q;(y) =xt~cosh
(Y)+ B~sinh(Y)

‘hi= (it),= [(:;) 1]1/2 (17b)

where the potential coefficients A ~”, B,e’h are indirectly

obtained upon application of boundary conditions.

As is well known, varying geometries shape field struc-

ture through the influence of boundaries. In MOL, the

influence of sidewalls is accounted for in the selection of

the transformation matrices. The top and bottom walls are

““*”””
Fig. 3. Discretization with respect to an edge,

described by the direct conditions d~ ‘/dy = @h = 6. And

field continuity for any dielectric-dielectric interface is

attended to by

(18a)

(18b)

(18c)

(18d)

where ~ is the quantity in [6] and

i== Fetiq. (19b)

The terms ~j,, are the constitutive sheet current densities

(i.e., KX,Z(X, z) = K~,z(x)e-~Pz) discretized at points on
the interface by the magnetic and electric potential lines,

respectively.

Also, interface conductors, which make a structure inter-

esting, influence the solution. They receive their attention

later as a final boundary condition. Here, the discretiza-

tion error caused by field/current singularities at their

edges (the Meixner condition) is attended to. Schulz [21]

finds this error to be negligible provided an edge exceeds

its last intersecting ~ e line by h/4 and its last intersecting

*h line by 3h/4, as Fig. 3 clarifies. This rule has bearing

on the choice of N. For a particular choice of physical

dimensions, there exists an N set producing partitions

nearly realizing this goal at each conductor edge. Stepping

N member-by-member from this set enforces accuracy and
monotonic convergence.

When these boundary conditions are tied together with

the wave solutions, manipulation yields important inter-

face equations. For this structure, the first is

(20)

where the subscripts c, d, and 2 indicate evaluation at
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y = c, d in region 2. Also arising is

EZ2C

EX2C

J5z2d
15x2d

where

(22b)

(21)

0.4!

~

0.4c

0.35

The terms ~1 , are the constitutive electric field intensities-, -
(i.e., E. .(x, Y, Z) = E~,z(x, y)e-~fl’) discretized at points
on the interface by the magnetic and electric potential

lines, respectively. Together, (20) and (21) state

M
EZ2C Itzc
J5X2C [1 I?xc=5
J5z2d Xzd ‘ [~] = [f][Q]. (23)

Ex2d Z.d

As alluded to earlier, the final boundary conditions are

those of the strip and slot. Enforcement relies upon the

intersection of discretization lines with these features. Since

small strips and slots are chosen for later computational

examples, an economization is effected here in anticipa-

tion. Null tangential electric fields and null tangential

sheet currents are imposed upon, respectively, the strip

and slot, resulting in a reduced number of feature–poten-

tial line intersections (reducing computation). With this

motive, (23) is reordered to

J5Z2C

EX2C
Zzd
Xxd

. [1i
Izzc

ix,
12z2d
12x2d

(24)

Upon the definition of a collective transformation matrix

=
o
❑

o

F=
ii

(25)

a final interface equation is possible in the discretized

domain

— MOL

ii’’’=”n[”:[”:
b = 24.13
c = 12.70
d = 11.43

‘r = 8.875

dun in mm

0 5 10 15 2

[f/GH7,1

Fig. 4. Isotropic test case: guide wavelength.

Thus, the strip/slot boundary condition

M
E:2=

(27)

at last implies the problem’s dispersion equation:

det[~(u,D)]re~=O. (28)

The subscript “red” stands for “reduced” and signifies

inclusion only for matrix elements associated with poten-

tial lines intersecting the strip and slot. Thus, (28) yields,

upon numerical solution, all phase constants of propagat-

ing modes at frequency ~. Note that due to the isolated

strip this structure always possesses an active mode (there-

fore, the dominant). With /3 now known, all guide fields

are explicitly calculable, allowing further computations of

interest to proceed (e.g., impedance). Lastly, it is the

typically small order of the determinantal equation (28)

that allows MOL to be accurate with small effort.

III. COMPUTATIONAL RESULTS

The method of lines developed in this paper enjoys very

good agreement with other methods. Comparisons to iso-

tropic shielded microstrip [22] and to a.nisotropic coplanar

waveguide [23] show an average difference of 0.5 percent

from these other theoretical calculations. This paper’s

structure also enjoys favorable comparisons. Itoh [16],

using an imrnittance matrix approach, calculates for the

isotropic case the dispersive normalized guide wavelength.

With a moderate discretization (N= 27), MOL is within a

0.2 percent average difference of Itoh’s example, as Fig. 4

illustrates. Itoh does not publish accompanying impedance

figures, so a simple check is made with respect to the
isotropic MOL formulation of Schulz et al. [6]. Fig. 5

presents the match between these dispersive impedance

calculations (via strip current and guide power) under

Itoh’s parameters. With N = 27, agreement is within a

O.1-percent average difference. Collectively, these positive

comparisons support this anisotropic MOL formulation.
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Fig. 5. Isotropic test case: impedance.
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Fig. 6. Effective permittivity for a sapphire dielectric case.
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Fig. 7. Impedance for a sapphire dielectric case.

Following are results from a larger study [24] exploring

the “fin-strip” structure and the method’s performance.

Consider the issue of anisotropy brought up in Figs. 6–9.

The curves are dominant-mode calculations to 0.5-percent

accuracy for sapphire and PTFE examples relating effec-

tive permittivity (ceff = (/1/kO)2) and impedance (strip

current-guide power) to the substrate thickness normalized

to free-space wavelength. All numerical examples assume

typical values for the strip/slot parameters and assume the

usual choices of symmetrically placed conductors, a sym-

metrically placed slab, and a standard guide (b/a = 2).

The first material, sapphire, is an attractively stable, high-

2.8

w/t=o .5, SIt=z.o

— c,, = 2.43, ,1= 2.88

2.4
‘--- S1/ = ,-L= 2.88
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0.00 0.02 0.04 t/10 0.06 0.08 0.10

Fig. 8. Effective permittivity for a PTFE dielectric case.
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Fig. 9. Impedance for a PTFE dielectric case.
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Fig. 10. Convergence behavior for a sapphire dielectric case.

permittivity substrate exhibiting a natural anisotropy of
Cll= 11.6, c ~ = 9.4. Figs. 6 and 7 present curves observing

these values and curves for the isotropic approximation

c,, = c ~ = 9.4. This choice stems from the aforementioned

approximation that in-plane permittivity controls [19].

However, it leads to errors in c~ff of up to – 11.6 percent

and in Z of up to +7.2 percent for the range shown. The

second material, PTFE, denotes a class of ceramic impreg-

nated, low-permittivity Teflon substrates possessing

manufacture-induced anisotropy. The member chosen here

has the values [25] f,, = 2.43, c ~ = 2.88. Figs. 8 and 9
present curves for these and for the isotropic approxima-
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Fig. 12. First higher order mode for a sapphire dielectric case.
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Fig. 13. First higher order mode for a PTFE dielectric case.

tion c,, = c ~ = 2.88. This approximation leads to errors in

C,ff of up to +8.8 percent and in Z of up to – 3.6 percent

for the range shown. A study of a number of cases [24]

finds deviations from 1.6 percent to 18.4 percent. Work

finds that no reasonable doctoring of an isotropic permit-

tivity value will substitute satisfactorily for a material’s

anisotropic one. Compounding this inability with the ob-

served errors lends weight to heeding anisotropy in model-

ing.

For MOL, N signifies the vector length of computa-

tional quantities and so is a measure of computational

effort. Under the assumed parameters of Figs. 10 and 11, a

[;
4

3

2

1

0

[:
4

3

2

1

0

w/t = 2.0
s/t = 1.0
b/t = 20.

t/s. = 0.10
N=63

102K
x

Kz

\

>

573

I

Fig. 14. Strip-currents/slot-fields for a sapphire dielectric case.

search reveals the optimal N set (due to edge conditions)

to be {13,23,33, ” “ .}. These figures depict the (dominant-

mode) convergence behavior of Ceff and Z with respect to

this set and illustrate the well-mannered convergence typi-

cal of MOL.
Of prime importance to single mode operation is knowl-

edge of the next higher order one. Computations show it

here also to occur for a central magnetic symmetry wall.

For the assumed parameters, Figs. 12 and 13 show next

higher order modes occurring at t/AO = 0.0477 for sap-

phire and at t/XO = 0.0667 for PTFE. When compared to

ordinary waveguide of equal outside dimensions, one finds

that the line delays higher mode turn-on (with lower

permittivities aiding in this more).

For a particular choice of physical dimensions, the rela-

tive strip-current/slot-field distributions depend still upon

frequency and mode number. It is instructive and interest-

ing to view their shapes and relative magnitudes. Figs. 14

and 15 display typical dominant-mode, normalized values

(at N= 63 for easy graphing). The computed currents

follow a commonly observed shape [26], and the curves in

all are consistent with the structure’s boundaries. Relative

to ordinary lines, this structure may experience lower
losses overall. Computation shows that almost all guide

power is confined to the substrate away from the large wall

surfaces, which realistically impose some loss. However,

admittedly, further calculations would have to be made to

substantiate this.
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IV. CONCLUSIONS

method of lines has been modified to deal with

class waveguide problems having uniaxially aniso-

substrates. It was shown to be an accurate and

full-wave scheme devoid of infinite summations,

integrals, and basis functions. Application was made to a

unique form of finline possessing both a strip and a slot

for which dispersive effective dielectric constants and im-

pedances were calculated. These characteristic values made

obvious the errors incurred in neglecting anisotropy. Other

associated results were discussed; among them was the

good convergence behavior of MOL.
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