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The Method of Lines Applied to a
Finline /Strip Configuration on an
Anisotropic Substrate

BRANDON M. SHERRILL, STUDENT MEMBER, IEEE, AND NICOLAOS G. ALEXOPOULOS, FELLOW, IEEE

Abstract — The method of lines (MOL), a numerical scheme for the
solution of partial differential equations that recently has been adapted to
the full-wave dispersive characterization of planar waveguide structures, is
modified to treat cases having uniaxially anisotropic dielectric regions.
Anisotropy is present in commonly used substrate materials and typically
leads to significant modeling error if neglected.

The modus operandi of the method of lines is the discretization of
spatial variables into a set of lines. Consequently, partial differential
equations are reduced to ordinary kinds possessing simple, closed-form
solutions. Being simple from the onset, the analysis effects an easily
implemented method of good and controllable accuracy.

The paper’s formulation is exercised upon an interesting form of finline,
one with both a fin and an isolated strip opposite one another on a uniaxial
substrate. Computations providing dispersive effective permittivities and
impedances highlight the errors incurred in neglecting anisotropy.

I. INTRODUCTION

HE METHOD OF LINES (MOL), a general princi-

ple in the mathematical literature (e.g., Rothe [1),
Faddeeva [2], Mikhlin et al. [3]), provides a simple means
for characterizing the dispersive properties of transmission
structures. The pioneering application of MOL to micro-
wave theory by Schulz et al. [4]-[6] affords an accurate
full-wave model of isotropic planar class waveguide struc-
tures (i.e., having plane dielectric regions separated by
interface metallization). More recent formulations [(71-111]
exist to deal with special features such as nonuniform
conductors and inhomogeneous or gyromagnetic regions.
This paper reports an application of the basic method
accounting for uniaxially anisotropic dielectrics. Ani-
sotropy is present in commonly used substrate materials
and usually produces significant modeling error if ne-
glected [12]. Thus, the presented plan broadens the existing
MOL literature to a wider class of materials (i.e., uniaxial).
MOL is a hybrid scheme incorporating components
from both differential and difference analyses. Under it,
all spatial variables but one of a scalar wave equation
system are discretized. Upon a decoupling transformation,
the system is solved exactly in closed form. No infinite
summations [13], integrals [14], or basis functions [15] are
present to impede calculation. Being simple from the onset,
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the analysis effects a method of good and controllable
accuracy.

After exposition, this new formulation is exercised upon
an interesting, relatively unstudied form of finline possess-
ing both a fin and an isolated strip. Published results are
available for this structure for isotropic substrates [6], [16],
and comparisons of our results to these are excellent. After
these checks, this paper proceeds to report on anisotropic
cases, which deviate significantly from isotropic ones, lend-
ing import to its modeling.

II. MATHEMATICAL FORMULATION

General MOL principles are highlighted herein as the
specific apparatus to treat the aforementioned finline is set
up. The geometry considered is that of Fig. 1. This “fin-
strip” is a uniform line possessing a fin of spacing s
opposite a strip of width w on a dielectric substrate of
thickness ¢. Conductors are assumed to be negligibly thin
and lossless. The coupled version of this line (i.e., having
dual strips) is found by Aikawa [17] to make possible
directional coupler designs that were previously impracti-
cal. It is likewise the additional degree of freedom pro-
vided by its strip/slot combination that prompts study of
this paper’s structure. Also, Meier [18] reports that other
advantages appear to be exhibited in general by such
E-plane components. In the light of these notes, this
waveguiding structure merits further attention.

The feature of interest is dielectric anisotropy. This
paper assumes uniaxial regions with optical axes normal to
region interfaces. Material is often supplied or selected in
this orientation in attempts to suppress anisotropic behav-
ior [19]. Hence, in the given coordinate system, each region
possesses a tensor permittivity of the form (e, = ¢, €,, =

ezz=€J_):

e, 0 O
€=¢| 0 ¢ O 1)
0 0 €,

with relative permittivities €,e , and free-space permittiv-
ity €,. Also, each region is assumed to be nonmagnetic
with free-space permeability p,. As Fig. 1 indicates, the
problem consists of three homogeneous regions (1,2,3).
The central one is a dielectric described by €|, e , #1 while
the two others are air.
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Fig. 1. Finline/strip configuration.

Having clarified the structure, determination of its fields
is facilitated with Hertzian potentials having components
in the optical axis direction [20]

ok =11 (x, y, 2). (2)

Denoted by e, &, two potentials, the electric and the mag-
netic, comprise the modes forming the general hybrid
solution. Assuming an e*/“' time-harmonic variation, the
fields of a homogeneous region are

E(x,y,2) =v(v-II*)+ kI IT° — jupgw xII* (32)
and
H(x, y,2) = juoege ;v XTI+ v (v-T")+ K1 TT* (3b)
where
ky=nko, k, =n ko, ko=

(42)

WyloEo
and

n"=‘/;, n,o=ye,, n/n,. (4b)

Propagation in the + z direction with phase constant 8 (to
be determined) entails the functional dependence

I (x, y, z) = ¥**(x, y)e 7. ()

The transverse potentials ¥ *(x, y) are solutions to the
scalar wave equations

T ) ¥ ()
+ (k2 —B2)¥*(x,y) =0 (62)
and
T )4 85 )
+(k% - B2)¥"(x,y)=0 (6b)

for each region. This partial differential equation (PDE)
set is the “input” to the method of lines. Through the

“quantizing” of one of its independent variables, MOL
approximates the PDE system to an ordinary differential
equation (ODE) one yielding equations more readily solv-
able.

For this specific setup, the usual case of conductors
placed symmetrically on the substrate is assumed. Taking
this symmetry plane as a magnetic wall together with half
a guide cross section yields an equivalent and more effi-
cient problem still yielding the dominant mode. Now as
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Fig. 2. Magnetic/electric sidewall discretization scheme.

the view of Fig. 2 shows, both potentials are sampled into
the interior functions

¥EH(7) = ¥OH(xE ),
on N lines, each with spacing

h=(x§—x8)/(N+1/2). (8)
The magnetic and electric sidewalls are positioned respec-
tively at x% and x§,, and are at the constant potentials
¥l and V¢, |, respectively (both zero). Likewise, the scalar
wave equations are discretized upon these lines, yielding
for i=1,---,N
2

Al (»)+ hz[‘l',u(y) 297 () + ¥4 (0)]
( - )‘I’; (y)=0 (92)

i=l,---’N

™)

and
d2
O hz[ () =29 (1) + ()]
+(k% —BZ)‘I'i”(y) =0. (%)
In this “discretized” domain, these are represented by
¥ (y)
¥eh(y)= : (10)
it (y)
and
d? _ =1 _
nh ——F(y)-[D* - n* (ki - B>)T|T(») =0 (11a)

2

d? _ =
hzw\ph(y)-[ph—hZ(k

where T and 0 are the identity and null entities, respec-
tively, and D" are the derivative matrices

2 - p)I|¥H(y)=0 (11b)

Dot —1\0
Deh = —1§2 1 . (12)
e, h
0 -1 Dj NN
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The sidewall constants D{**, D" are from the set {1,2}
with Df = D} =1, D§= D} =2 for this discourse.
Uncoupling of the governing ODE set is possible by a
linear transformation upon the potentials. A simple one
exists as a consequence of the uncomplicated wall boundary
conditions (i.e., lossless) and the unsophisticated discreti-
zation scheme (i.e., equispaced). In these other cases, this
transformation must be approached numerically [11], but
here analytic expressions are available [6]. Table I in [6]
lists this transformational matrix in its forms versus side-
wall type. Applying it to the derivative matrices, whose
nondiagonal nature is yielding the coupling, gives

it,hﬁe’h%e,h =" (13)
where X®" are the achieved diagonal matrices, and ¢
indicates transposition, Here, T,, A° are entries of the third
row of [6, table I] and Th, X" are those of the second. When
in conjunction with (13) the transformed potentials

Bek(y) =T FeH(y) (14)

are defined, an uncoupled wave equation system results:

> - -
n’h?——®¢(y)—&;@(y) =0

57 (15a)
and
d? . s ~
5 8(y) - 58" (y) =0 (15b)
Ly
where for each region
&= [Re-n2(k2-p)1] (16a)
and
&= X n2(k2 - p2)d]. (16b)

A valuable property of this “transformed” domain is that
all matrices in it are diagonal and so behave as vectors.
This permits matrix equation algebra to be performed
element-by-element rather than by grand manipulation.
Hence, solutions to (15) are simply (i =1,..., N)

Kl . Kel
®7(y) =Afcosh( ehy)+stmh(—y),

n nh
Ker = (féf)z= [(,%3)1]1/2 (173)
and
o/(y) =Af‘cosh('€};1—’y) + B sinh(KL];)i),
Km = ('%h), = [(’gf),]m (17b)

where the potential coefficients 4%*, B#" are indirectly
obtained upon application of boundary conditions.

As is well known, varying geometries shape field struc-
ture through the influence of boundaries. In MOL, the
influence of sidewalls is accounted for in the selection of
the transformation matrices. The top and bottom walls are
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Fig. 3. Discretization with respect to an edge.

described by the direct conditions d®¢/dy = & = 0. And
field continuity for any dielectric—dielectric interface is
attended to by

dde  dde 8
b @ (18a)
®" =" (18b)

-, o\ lz[d®" 4% .

weO,B(elJrqu—el )] )=26 A - D +K,
(18¢)

jweoz(E b _ &Je)= d@ﬁ_@ -

h L +F+ 1-*- Ji dy dy x

(184d)
where § is the quantity in [6] and

E =T/K: (19a)
K, =TK! (19b)

The terms K .- are the constitutive sheet current densities
(ie, K, ,(x,z)=K] (x)e™F?) discretized at points on
the interface by the magnetic and electric potential lines,
respectively.

Also, interface conductors, which make a structure inter-
esting, influence the solution. They receive their attention
later as a final boundary condition. Here, the discretiza-
tion error caused by field /current singularities at their
edges (the Meixner condition) is attended to. Schulz [21]
finds this error to be negligible provided an edge exceeds
its last intersecting ¥* line by 4 /4 and its last intersecting
V" line by 3k /4, as Fig. 3 clarifies. This rule has bearing
on the choice of N. For a particular choice of physical
dimensions, there exists an N set producing partitions
nearly realizing this goal at each conductor edge. Stepping
N member-by-member from this set enforces accuracy and
monotonic convergence.

When these boundary conditions are tied together with
the wave solutions, manipulation yields important inter-
face equations. For this structure, the first is

0 ZeC K.:ZC

oL 21| K

o [=lo]] (20)
(I)Zd sz

(Déld xd

where the subscripts ¢, d, and 2 indicate evaluation at
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y = ¢, d in region 2. Also arising is

E~22c éfc

E,. =1| &2

e | [ B] .2 (21)

E. g o5,

Evra @7,

where

E T E’ (22a)
E, =TE!. (22b)

The terms E—;’Z are the constitutive electric field intensities
(.e., E, (x,y,z)=E] (x, y)e ) discretized at points
on the interface by the magnetic and electric potential
lines, respectively. Together, (20) and (21) state

Ez2c IZ zc

Exlc If 1 [3114

Ede [Z] K" s [Z] - [P] [Q] (23)
Ede de

As alluded to earlier, the final boundary conditions are
those of the strip and slot. Enforcement relies upon the
intersection of discretization lines with these features. Since
small strips and slots are chosen for later computational
examples, an economization is effected here in anticipa-
tion. Null tangential electric fields and null tangential
sheet currents are imposed upon, respectively, the strip
and slot, resulting in a reduced number of feature—poten-
tial line intersections (reducing computation). With this
motive, (23) is reordered to

Ech ch

x2c [S] (24)
z2d

szd Ex2d

Upon the definition of a collective transformation matrix

1

7] = (25)

ol ol on Nt
on on NIl on

ol Nl on on

S o on o

a final interface equation is possible in the discretized
domain

Ez’zc K,
2o (5] D | (8= [FI[SIIF]. o)
zd z2d
K, Eira

0.45
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Fig. 4. Isotropic test case: guide wavelength.

Thus, the strip/slot boundary condition

T’
z2¢

e 0 (27)
zd
K;d red
at last implies the problem’s dispersion equation:

det[S5(w, 8)] ,=0. (28)

The subscript “red” stands for “reduced” and signifies
inclusion only for matrix elements associated with poten-
tial lines intersecting the strip and slot. Thus, (28) yields,
upon numerical solution, all phase constants of propagat-
ing modes at frequency f. Note that due to the isolated
strip this structure always possesses an active mode (there-
fore, the dominant). With 8 now known, all guide fields
are explicitly calculable, allowing further computations of
interest to proceed (e.g., impedance). Lastly, it is the
typically small order of the determinantal equation (28)
that allows MOL to be accurate with small effort.

1II. COMPUTATIONAL RESULTS

The method of lines developed in this paper enjoys very
good agreement with other methods. Comparisons to iso-
tropic shielded microstrip [22] and to anisotropic coplanar
waveguide [23] show an average difference of 0.5 percent
from these other theoretical calculations. This paper’s
structure also enjoys favorable comparisons. Itoh [16],
using an immittance matrix approach, calculates for the
isotropic case the dispersive normalized guide wavelength.
With a moderate discretization (N = 27), MOL is within a
0.2 percent average difference of Itoh’s example, as Fig. 4
illustrates. Itoh does not publish accompanying impedance
figures, so a simple check is made with respect to the
isotropic MOL formulation of Schulz er al. [6]. Fig. 5
presents the match between these dispersive impedance
calculations (via strip current and guide power) under
Itoh’s parameters. With N =27, agreement is within a
0.1-percent average difference. Collectively, these positive
comparisons support this anisotropic MOL formulation.
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Fig. 6. Effective permittivity for a sapphire dielectric case.
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Fig. 7. Impedance for a sapphire dielectric case.

Following are results from a larger study [24] exploring
the “fin-strip” structure and the method’s performance.
Consider the issue of anisotropy brought up in Figs. 6-9.
The curves are dominant-mode calculations to 0.5-percent
accuracy for sapphire and PTFE examples relating effec-
tive permittivity (e.;=(B/k,)?) and impedance (strip
current-guide power) to the substrate thickness normalized
to free-space wavelength. All numerical examples assume
typical values for the strip /slot parameters and assume the
usual choices of symmetrically placed conductors, a sym-
metrically placed slab, and a standard guide (b/a = 2).
The first material, sapphire, is an attractively stable, high-

2.8
w/t=0.5, s/1=2.0
Rk
e[| = 2-43, g, = 2.88
2.4 ey = g = 2.88
2.2
EeffJ ——
b/t = 40 e ]
2.0 4 — _ ————
— 10 -
- —_—— ———
"_—”_—_’__40/,/———’/
1.8 4 To
p
1.6 Y T 4 ™ T T T T T
0.00 0.02 0.04  t/3g 0.06 0.08 0.10

Fig. 8. Effective permittivity for a PTFE dielectric case.
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Impedance for a PTFE dielectric case.
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41

40 4 'y ITTT 5125 +0.08%
T1.45¢  t0-45%

39 7

T T L T v T
0 10 20 30 N 40 50 60 70

Fig. 10. Convergence behavior for a sapphire dielectric case.

permittivity substrate exhibiting a natural anisotropy of
€,=11.6, ¢ | =9.4. Figs. 6 and 7 present curves observing
these values and curves for the isotropic approximation
¢, =€, = 9.4. This choice stems from the aforementioned
approximation that in-plane permittivity controls [19].
However, it leads to errors in €. of up to —11.6 percent
and in Z of up to +7.2 percent for the range shown. The
second material, PTFE, denotes a class of ceramic impreg-
nated, low-permittivity Teflon substrates possessing
manufacture-induced anisotropy. The member chosen here
has the values [25] ¢ =243, ¢, =2.88. Figs. 8 and 9
present curves for these and for the isotropic approxima-
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Fig. 11. Convergence behavior for a PTFE dielectric case.
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Fig. 12. First higher order mode for a sapphire dielectric case.
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Fig. 13. First higher order mode for a PTFE dielectric case.

tion ¢, =€ = 2.88. This approximation leads to errors in
€ Of up to +8.8 percent and in Z of up to — 3.6 percent
for the range shown. A study of a number of cases [24]
finds deviations from 1.6 percent to 18.4 percent. Work
finds that no reasonable doctoring of an isotropic permit-
tivity value will substitute satisfactorily for a material’s
anisotropic one. Compounding this inability with the ob-
served errors lends weight to heeding anisotropy in model-
ing.

For MOL, N signifies the vector length of computa-
tional quantities and so is a measure of computational
effort. Under the assumed parameters of Figs. 10 and 11, a

2
i w/t = 2.0
4 s/t = 1.0
b/t = 20.
t/A, = 0.10
N =63
3 4
2 - 102k
X
K
2
1 I
)
[ w/2

4

1} s/2
Fig. 14. Strip-currents/slot-fields for a sapphire dielectric case.

search reveals the optimal N set (due to edge conditions)
to be {13,23,33, - - - }. These figures depict the (dominant-
mode) convergence behavior of €., and Z with respect to
this set and illustrate the well-mannered convergence typi-
cal of MOL.

Of prime importance to single mode operation is knowl-
edge of the next higher order one. Computations show it
here also to occur for a central magnetic symmetry wall.
For the assumed parameters, Figs. 12 and 13 show next
higher order modes occurring at /A, =0.0477 for sap-
phire and at ¢ /A, =0.0667 for PTFE. When compared to
ordinary waveguide of equal outside dimensions, one finds
that the line delays higher mode turn-on (with lower
permittivities aiding in this more).

For a particular choice of physical dimensions, the rela-
tive strip-current/slot-field distributions depend still upon
frequency and mode number. It is instructive and interest-
ing to view their shapes and relative magnitudes. Figs. 14
and 15 display typical dominant-mode, normalized values
(at N =63 for easy graphing). The computed currents
follow a commonly observed shape [26], and the curves in
all are consistent with the structure’s boundaries. Relative
to ordinary lines, this structure may experience lower
losses overall. Computation shows that almost all guide
power is confined to the substrate away from the large wall
surfaces, which realistically impose some loss. However,
admittedly, further calculations would have to be made to
substantiate this.
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Fig. 15. Strip-currents/slot-fields for a PTFE dielectric case.

IV. CONCLUSIONS

The method of lines has been modified to deal with
planar class waveguide problems having uniaxially aniso-
tropic substrates. It was shown to be an accurate and
simple full-wave scheme devoid of infinite summations,
integrals, and basis functions. Application was made to a
unique form of finline possessing both a strip and a slot
for which dispersive effective dielectric constants and im-
pedances were calculated. These characteristic values made
obvious the errors incurred in neglecting anisotropy. Other
associated results were discussed; among them was the
good convergence behavior of MOL.
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